Enigme N° 37
Retrouvez toutes les autres énigmes !

La vengeance de Boris...

Cindy est au lit, malade, et le prof de Maths a confié à Boris le soin de lui téléphoner l'exercice pour le lendemain. Il s'agit de dessiner un quadrilatère (non croisé), et le professeur leur a fait marquer à cet effet trois indications dans le cahier de texte...
Mais voilà ; Boris en veut encore à Cindy, qui lui a valu sa dernière punition (voir "L'énigme précédente" pour avoir les détails de ce terrible épisode...). Un sourire machiavélique se dessine sur ses lèvres alors qu'il saisit le téléphone... Entendant la voix de Cindy, au bout du fil, il lui précise qu'il s'agit d'un quadrilatère non croisé, et lui dicte le texte suivant :

1) Tous ses côtés opposés sont parallèles et ce n'est pas un carré...
2) Il a à la fois deux côtés consécutifs de longueurs différentes, et des diagonales qui se coupent en leur milieu...
3) Il n'a pas d'angle droit, ou alors il a un centre de symétrie, ou les deux...

Et il raccroche... Les heures passent, mais Boris, vautré sur le canapé, ne parvient pas à apprécier le film qu'il regarde à la télé. Insidieusement, le remords le ronge...
N'y tenant plus, il compose à nouveau le numéro de Cindy, et lui dit :

" Je t'appelle pour te dire qu'une des trois phrases que je t'ai dictées est fausse : je peux te l'affirmer, je me suis arrangé pour cela... Mais ne compte pas sur moi pour que je te dise laquelle... Les deux autres, par contre, sont exactes... ".

Et aussitôt, il raccroche.

Le lendemain, et contrairement d'ailleurs à Boris, Cindy avait une fois de plus la réponse correcte à l'exercice. Quelle figure avait-elle tracé ?

 

Si vous connaissez une énigme amusante ou originale, n'hésitez pas à nous la proposer avec la solution et le nom de l'auteur (si vous le connaissez ; si c'est vous, c'est encore mieux !).
Nous nous ferons un plaisir de la publier dans les semaines à venir !

Proposer une énigme

 

Page d'accueil de Maths à  Harry

 

 

Supposons que la première phrase soit fausse.
Pour que la proposition :

"Tous ses côtés opposés sont parallèles, et ce n'est pas un carré"
soit fausse,
il faut qu'une de ses deux parties le soit, car elle ne sera vraie que si les deux conditions le sont simultanément. Donc,
ou bien
tous ses côtés opposés ne sont pas parallèles,
ou bien c'est un carré.
Si tous ses côtés opposés ne sont pas parallèles, ce n'est pas un parallélogramme ; mais alors la deuxième phrase serait fausse aussi, puisqu'on y suppose que les diagonales se coupent en leur milieu ; et une seule des phrases est fausse. Si c'est un carré, il n'aurait pas deux côtés consécutifs de longueurs différentes, et là aussi, la deuxième phrase serait fausse.

Supposons maintenant que la troisième phrase soit fausse, il faut par contre que ses deux conditions soient fausses simultanément, car il suffit qu'une seule des deux "parties" soit exacte pour que la phrase soit vraie. La négation de :
"Il n'a pas d'angle droit, ou un centre de symétrie, ou les deux"
est :
"Il a un angle droit et pas de centre de symétrie..."
Mais, s'il n'a pas de centre de symétrie, ce n'est pas un parallélogramme, donc la première phrase est fausse aussi.

C'est donc la deuxième phrase qui est fausse.
Pour que la phrase :

"Il a à la fois deux côtés consécutifs de longueurs différentes et des diagonales qui se coupent en leur milieu."
soit fausse, il faut au moins qu'une des deux "parties" soit fausse, ce qui devient :
"Il n'a pas deux côtés consécutifs de longueurs différentes, ou alors ses diagonales ne se coupent pas en leur milieu"...
Supposons que ses diagonales ne se coupent pas en leur milieu. Ce ne serait alors pas un parallélogramme, et les indications 1 et 3 seraient fausses... Donc il n'a pas deux côtés consécutifs de longueurs différentes, ce qui revient à dire en fait que tous ses côtés sont de même longueur !

Est-ce un carré ? Non, d'après la phrase 1, qui est vraie...

Cindy a donc dessiné un losange.